Motion of an Elastic Solid inside an Incompressible Viscous Fluid

نویسندگان

  • Daniel Coutand
  • Steve Shkoller
  • S. Shkoller
چکیده

The motion of an elastic solid inside an incompressible viscous fluid is ubiquitous in nature. Mathematically, such motion is described by a PDE system that couples the parabolic and hyperbolic phases, the latter inducing a loss of regularity which has left the basic question of existence open until now. In this paper, we prove the existence and uniqueness of such motions (locally in time), when the elastic solid is the linear Kirchhoff elastic material. The solution is found using a topological fixed-point theorem that requires the analysis of a linear problem consisting of the coupling between the time-dependent Navier-Stokes equations set in Lagrangian variables and the linear equations of elastodynamics, for which we prove the existence of a unique weak solution. We then establish the regularity of the weak solution; this regularity is obtained in function spaces that scale in a hyperbolic fashion in both the fluid and solid phases. Our functional framework is optimal, and provides the a priori estimates necessary for us to employ our fixed-point procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space

In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function.   The general solution of the equation of motion is obtained, which satisfies the required radiation condition.  The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...

متن کامل

Electro-Thermo-Dynamic Buckling of Embedded DWBNNT Conveying Viscous Fluid

In this paper, the nonlinear dynamic buckling of double-walled boron-nitride nanotube (DWBNNT) conveying viscous fluid is investigated based on Eringen's theory. BNNT is modeled as an Euler-Bernoulli beam and is subjected to combine mechanical, electrical and thermal loading. The effect of viscosity on fluid-BNNT interaction is considered based on Navier-Stokes relation. The van der Waals (vdW)...

متن کامل

Deformation of elastic particles in viscous shear flow

Submitted for the DFD08 Meeting of The American Physical Society Deformation of Elastic Particles in Viscous Shear Flow TONG GAO, HOWARD HU, University of Pennsylvania — The dynamics of two dimensional elastic particles in a Newtonian viscous shear flow is studied numerically. A constitutive equation is constructed for an incompressible “Neo-Hookean” elastic solid where the extra stress tensor ...

متن کامل

Nonlinear Nonlocal Vibration of an Embedded Viscoelastic Y-SWCNT Conveying Viscous Fluid Under Magnetic Field Using Homotopy Analysis Method

In the present work, effect of von Karman geometric nonlinearity on the vibration characteristics of a Y-shaped single walled carbon nanotube (Y-SWCNT) conveying viscose fluid is investigated based on Euler Bernoulli beam (EBB) model. The Y-SWCNT is also subjected to a longitudinal magnetic field which produces Lorentz force in transverse direction. In order to consider the small scale effects,...

متن کامل

Wave Propagation Analysis of CNT Reinforced Composite Micro-Tube Conveying Viscose Fluid in Visco-Pasternak Foundation Under 2D Multi-Physical Fields

In this research, wave propagation analysis in polymeric smart nanocomposite micro-tubes reinforced by single-walled carbon nanotubes (SWCNT) conveying fluid is studied. The surrounded elastic medium is simulated by visco-Pasternak model while the composite micro-tube undergoes electro-magneto-mechanical fields. By means of micromechanics method, the constitutive structural coefficients of nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005